A novel exact solution for the fractional Ambartsumian equation

نویسندگان

چکیده

Abstract Fractional calculus (FC) is useful in studying physical phenomena with memory effect. In this paper, a fractional form of Ambartsumian equation considered utilizing the Caputo derivative. The Heaviside expansion formula classical (CC) extended/developed view FC. Then, extended applied to obtain exact solution simplest form. Several theorems and lemmas are proved facilitate evaluation inverse Laplace transform specific expressions forms. established terms one-parameter Mittag-Leffler function which provided for first time present reduces corresponding one relevant literature as order tends one. Moreover, convergence obtained theoretically proved. Comparisons another approach performed. advantage analysis over existing discussed analyzed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fuzzy Solution for Exact Second Order Fuzzy Differential Equation

In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...

متن کامل

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

Positive Solution for Boundary Value Problem of Fractional Dierential Equation

In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.

متن کامل

Positive solution for boundary value problem of fractional dierential equation

In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.

متن کامل

Exact solution for the fractional cable equation with nonlocal boundary conditions

The fractional cable equation is studied on a bounded space domain. One of the prescribed boundary conditions is of Dirichlet type, the other is of a general form, which includes the case of nonlocal boundary conditions. In real problems nonlocal boundary conditions are prescribed when the data on the boundary can not be measured directly. We apply spectral projection operators to convert the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2021

ISSN: ['1687-1839', '1687-1847']

DOI: https://doi.org/10.1186/s13662-021-03235-w